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The paper examines two-dimensional force functions useful in the wind-response analysis of
blu! bodies, such as bridges, that are elongated in the across-wind direction. Airfoil-type
theoretical 2-D indicial, admittance, and oscillatory force functions and their interrelationships
are "rst recalled for their analogical value. Following this, a spectral force expression is
developed for the lift on a blu! section due to a cross-wind with a vertical turbulence
component. The expression proposed involves an aerodynamic admittance that is based upon
measured #utter derivatives for the blu! section plus information on the coherence of vertical
turbulence in the atmospheric boundary layer. ( 2000 Academic Press
1. INTRODUCTION

THE PRESENT PAPER is part of the continuing search to improve analytic models for wind
forces on structures of extended span, such as bridges. The cross-sections of such structures
must usually be considered blu! in form, although some modern bridges have cross-sections
that are quite streamlined.

While all physical #ows are inherently three-dimensional, the two-dimensional or sec-
tional point of view has historically proven its value as a step toward understanding the
central characteristics of many practical problems of #uid}structure interaction. This
viewpoint is retained in the present paper, since it deals with along-wind sections of
structures that are considerably extended in the across-#ow direction. It is akin to the case
of in"nite aspect ratio in aeronautical parlance.

For a body placed in a cross-#ow, the #ow-induced forces developed on it will in general
be time-dependent as a consequence of body shape or motion, or of turbulence in the
approach #ow. Analytical force models in this context, created for the purposes of structural
design, thus require formats that permit quanti"cation of their frequency and amplitude
dependencies. This paper will review some models of this kind, characterizing them
according to time dependence and both complex-Fourier and power-spectral frequency
dependence. Some classical airfoil results will "rst be reviewed as possible procedural
prototypes. The end objective of the present paper is, through a review of some models of lift
behavior, to arrive at a practical one that incorporates available dynamic, experimental
evidence measured on the particular body under study.

When there occurs an abrupt change in the attitude of the body relative to the horizontal
cross-#ow, a transient is initiated in the associated force acting on the body. This typically is
not instantaneous but takes some time to develop. Some particular #uid-body relative
motions that have &&indicial'' or unitary characteristics form a basis for the study of the
ensuing force transients. Typical of these are: (a) a step function change in the e!ective angle
89}9746/00/010049#15 $35.00/0 ( 2000 Academic Press



50 R. H. SCANLAN
of attack of the #ow relative to the body; (b) penetration of the body into (or envelopment of
the body by) a half-space endowed with a speci"ed vertical velocity; and (c) oscillatory
motion of the body relative to its rest position.

A simple monotonic function describing an elementary evolution from a fractional
starting value to a unitary terminal value (sPR) is the function

U (s)"1!ae~bs, (1)

where s is a variable like time and a, b are constants. This can be given more descriptive
#exibility by the inclusion of more exponential terms. In airfoil transient-lift theory the
evolutionary form

U(s)"1!ae~bs!ce~ds, (2)

where s is the dimensionless time and a, b, c and d are constants, has proven useful. This
function which, historically, has been used in many applications, can take on a variety of
forms depending on the values chosen for the four parameters a, b, c and d. Several alternate
choices of parameters will be employed in what follows.

2. CLASSICAL THIN AIRFOIL INDICIAL LIFT

Steady-state or mean vertical lifts ¸ on an airfoil is described by the formula

¸"1
2

o;2BC
L
, (3)

where o is air density, ; is cross-#ow velocity, B is airfoil chord, and C
L

is an appropriate
constant lift coe$cient. If C

L
is "xed at a value C

L0
and the angle of attack of the airfoil is

changed by a small amount a, the steady vertical lift becomes, to a common "rst approxima-
tion (Maclaurin expansion):

¸"1
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o;2B[C
L0
#C@

L
a], (4)

where C@
L
"dC

L
/da at that value of C

L0
.

If, on the other hand, the steady-state condition is altered by an abrupt step-function
change from a zero-lift condition to an incremental angle of attack a

0
, the lift undergoes

a transient change described by

¸ (s)"1
2

o;2BC@
L
a
0
u(s) , (5)

where s"2;t/B is a dimensionless time, or distance expressed in chord lengths, and u(s) is
an indicial lift-growth function. The form of this function was determined theoretically for
a thin airfoil (#at plate) by Wagner (1925). The function is pictured in Figure 1. Its limiting
characteristics were determined by Wagner to be

u (0)"0)5 and lim
s?=

u (s)"1.

It follows that, if linear superpositional principles are invoked, the time-history of lift
associated with an arbitrary small airfoil motion a (s) can be formally expressed as

¸(s)"
1

2
o;2BC@

L P
s

~=

u (s!p) a@ (p) dp, (6)
sThroughout the present context, lift ¸ is assumed to be vertical rather than normal to the relative wind as in the
conventional aeronautical context.



Figure 1. Indicial response functions: Wagner, KuK ssner and representative blu! body.
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or, by a change of variables and integration by parts,

¸ (s)"
1

2
o;2BC@

LGu (0) a (s)#P
=

0

u@(p) a(s!p) dpH . (7)

Jones (1940) o!ered an excellent approximation for u (s), namely the form (2) in which
a"0)165, b"0)0455, c"0)335 and d"0)300. Its "rst derivative is

u@(s)"a b e~bs#c d e~ds. (8)

3. CLASSICAL AIRFOIL FLUTTER

Theodorsen (1934) developed complex expressions for the oscillating lift and moment on
a thin airfoil undergoing complex vertical (h) and torsional (a) oscillatory motion:

h"h
0
e*ut"h

0
e*ks, a"a

0
e*ut"a

0
e*ks

where k is the dimensionless oscillation frequency k"Bu/2; and u is the circular
oscillation frequency:
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Figure 2. Real and imaginary components of Theodorsen circulation function.
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In equations (9) and (10) the theoretical lift curve slope is C@
L
"2n; aB/2 is the distance from

the airfoil midchord to the oscillatory rotation point; h is the vertical de#ection of that
point; a is the rotational angle about it; and the function C(k) is the renowned Theodorsen
(1934) circulation function

C(k)"F (k)#iG(k) , (11)

originally expressed in terms of Bessel or Hankel functions. The functions F and G have
the forms plotted in Figure 2. The terms in equations (9) and (10) with the factor C(k)
constitute the principal, i.e. &&circulatory'', part of the lift or moment. It is noteworthy that,
while (the oscillatory) ¸ and M are expressed in the time domain, the coe$cients dependent
on C(k) in equations (9) and (10) are de"ned in the frequency domain. This is a built-in
characteristic of the classical #utter theory. An interesting further result for the circulatory
terms of equations (9) and (10) is that they depend on the e!ective vertical velocity of the
rearward 3/4 chord point of the airfoil.

For an oscillatory motion consisting only of the vertical velocity hQ the circulatory lift
according to equation (9) is

¸"!no;BC(k)hQ , (12)

the value of which may be rewritten more conventionally as

¸"1
2

o;2BC@
L
s
T
(k) a , (13)

where a"hQ /;, C@
L
"2n and the factor s

T
(k) can be recognized as a complex aerodynamic

admittance function

s
T
(k)"F (k)#iG(k) . (14)
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According to the classical thin airfoil theory, the lift (13) acts at the airfoil forward
quarter-chord point. If expression (13) is compared to equation (7) for a"hQ /;"a

0
e*ks, the

following equivalence can be demonstrated:

C(k)"u (0)#u@, (15)

where

u@ (k)"P
=

0

u@(p) e~*kpdp (16)

is the Fourier transform of the "rst s-derivative of the Wagner function u(s). The relation
(15) was "rst demonstrated by Garrick (1938).

From equations (15) and (8), and noting that the Fourier transform of e~bs is 1/(b#ik),
the following excellent approximations may be derived for the functions F (k) and G(k):

F (k)"1!a!c#
ab2

b2#k2
#

cd2

d2#k2
, (17)

G(k)"!kC
ab

b2#k2
#

cd

d2#k2D , (18)

with a, b, c and d as speci"ed earlier.
The power spectrum S

L
(k) of the lift (13) is thus related to that of the angle of attack

Sa(k) by

S
L
(k)"[1

2
oU2BC@

L
]2 Ds

T
(k) D2Sa (k), (19)

where

Ds
T
(k) D2"F2(k)#G2(k) (20)

is the squared amplitude of the ¹heodorsen aerodynamic admittance function. This function
has the form plotted in Figure 3.

The relations reviewed to this point are theoretical circulatory lift functions of thin airfoil
vertical motion relative to a smooth horizontal approach #ow. Analogous observations will
next be noted for cases in which the motion is that of the #ow moving vertically relative to
the body.

4. AIRFOIL PENETRATION OF A UNIFORM GUST

KuK ssner (1936) analyzed the situation in which a thin airfoil moving at horizontal velocity
; penetrates a half-space of uniform vertical velocity w

0
, where w

0
is small relative to ;.

The resulting lift at the forward quarter-chord of the airfoil takes the form

¸(s)"1
2

o;BC@
L
w
0
t (s) , (21)

where the function t (s) evolves with s as depicted in Figure 1. This theoretical function has
the characteristics that

t (0)"0 and lim t(s)"1.

s?=



Figure 3. Admittance functions: Ds
T
D2"Theodorsen; Ds

S
D2"Sears; Ds

B
D2"representative blu! body.
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By replacing U(s) by t (s) in equation (2), an excellent approximation for the function t is
given by equation (2) if for this case a, b, c and d are given the alternate values

a"c"0)5, b"0)130, d"1)00.

By superposition, the lift due to the penetration of a gust of any form w (s) of variable gust
velocity, may, following the pattern of equation (7), be expressed by

¸ (s)"
1

2
o;BC@

L Ct (0)w(s)#P
=

0

t@ (p)w (s!p) dpD . (22)

5. AIRFOIL PENETRATION OF A SINUSOIDAL GUST

Sears (1941) analyzed the situation of a thin airfoil penetrating a half-space in which
a vertical gust is undergoing the sinusoidal vertical velocity w (s)"w

0
e*wt"w

0
e*ks. The

resulting quarter-chord lift on the airfoil takes the form

¸(s)"1
2

o;BC@
L
s
S
(k)w

0
e*ks, (23)

in which

s
S
(k)"t (0)#t@ (k)"F

S
(k)#iG

S
(k) (24)

is the complex Sears aerodynamic admittance function, t@ being the Fourier transform of t@.
Excellent approximations to the functions F

S
(k) and G

S
(k) can be obtained from equations

(17) and (18) by replacing F by F
S
, G by G

S
, and giving a, b, c and d the values

a"c"0)5, b"0)130, d"1)0 used above in the approximation for t(s).
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The power spectral density of ¸ (s) in this case is

S
L
(k)"[1

2
o;BC@

L
]2 Ds

S
D2S

w
, (25)

where

Ds
S
D2"F2

S
(k)#G2

S
(k). (26)

In the frequency domain the function Ds
S
D2 is commonly known as the Sears admittance

function and has the appearance depicted in Figure 3. It serves to link, for an airfoil, the
spectrum of vertical gusting velocity to that of associated lift. This function has the
convenient empirical approximation (Scanlan 1993):

Ds
S
D2"

1

1#5k
. (27)

To this point theoretical circulatory motional aerodynamic e!ects for a thin airfoil have
been linked to their corresponding aerodynamic admittances. How results of this type may
be accomplished for other than theoretical cases is addressed next.

6. BLUFF-BODY FLUTTER FORCES

For general bodies of nonstreamlined cross-section at which some #ow separation typically
occurs, no general circulatory theory exists for deriving body-force results analogous to
those above from "rst principles such as potential #ow theory. Instead, it has become
customary to identify forces associated with blu!-body oscillation by experimental means
(Scanlan & Tomko 1971). Over the last two decades, a variety of e!ective experimental
means to this end have evolved. These will not be reviewed here.

Consider a blu! body with degrees of freedom h (vertical) and a (rotation). The follow-
ing forms have been commonly employed (Scanlan & Jones 1990) to associate
motional aerodynamic sectional forces with structural, purely oscillatory, degrees of free-
dom h and a:

¸"

1

2
o;2BCKH*

1

hQ
;
#KH*

2

BaR
;

#K2H*
3
a#K2H*

4

h

BD , (28)

M"

1

2
o;2B2 CKA*

1

hQ
;
#KA*

2

BaR
;

#K2A*
3
a#K2A*

4

h

BD . (29)

In these equations the coe$cients H*
i
(K) and A*

i
(K), i"1, 2, 3, 4, are considered to be

experimentally determined functions of K; (K"2k), where K"Bu/;, u being the oscilla-
tion circular frequency. For sinusoidal motions, the e!ects of inertial terms not speci"cally
provided are contained implicitly within the displacement terms. The coe$cients H*

i
(K),

A*
i
(K), i"1,2, 4, have obvious correspondences to the Theodorsen results in the case of

the thin airfoil [cf. equations (9) and (10)]. In some cases of experimental values for H*
i
, A*

i
,

apparent or approximate relations between certain pairs of these coe$cients have been
suggested. Such relations should be viewed as fortuitous rather than causally linked, since,
in the case of an arbitrary blu! body, no unifying circulatory function analogous to C(k)
exists. On the other hand, an indicial function U(s) based on the full, observed oscillatory
forces can be determined. Postulating U as such a function, for an arbitrary e!ective angle of
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attack a(s), equation (7) gives the lift evolution as

¸(s)"
1

2
o;2BC@

LGU(0) a (s)#P
=

0

U@(p) a (s!p) dpH . (30)

If now the case is considered where a (s)"hQ (s)/; and a is complex sinusoidal:

a (s)"a
0
e*ks.

The lift ¸ (s) takes the form

¸ (s)"1
2

o;2BC@
L
MU(0)#U@N a

0
e*ks, (31)

where U@ is the Fourier transform of U@(s). The corresponding form for the lift according to
equation (28), since hQ "iuh, would be

¸ (s)"1
2

o;2BK[H*
1
!iH*

4
] a

0
e*ks. (32)

Thus, U(s) is linked to the #utter derivatives H*
1

and H*
4

by the relation

C@
L
[U(0)#U@]"K[H*

1
!iH*

4
]. (33)

The Fourier transform M̧ of the lift convolution ¸ (s) as given by equation (30) is then

M̧ (k)"1
2

o;2BC@
L
MU(0)#U@(k)N aN (k)

"1
2

o;2BK[H*
1
!H*

4
] aN (k). (34)

The power spectral density S
L
(k) of ¸ (s) is then given by

S
L
(k)"[1

2
o;2B]2K2[H*

1
2#H*

4
2]Sa(k). (35)

The expression

Ds
B
D2"K2[H*

1
2#H*

4
2]/C@2

L
(36)

may then be recognized as the aerodynamic admittance associated with lift due to vertical
velocity hQ (s). It is linked to its associated indicial function via the relation

Ds
B
D2"[U(0)#U@][U(0)#U@*], (37)

where U1 @* is the complex conjugate of U1 @.

If the detailed form of U(s) is desired it may be inferred from best-"t approximations to
experimentally measured functions H*

1
and H*

4
, employing equation (33). A process of this

kind was used by Scanlan et al. (1974). In a representative case close to one of theirs, the
form (2) for U corresponding to a step change in vertical velocity of a blu! section may be
associated with a set of coe$cients like

a"!2)5, b"0)8, c"3)0, d"1,

i.e.

U(s)"1#2)5e~0>8s!3)00e~s. (38)
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This function has the form depicted in Figure 1, wherein, unlike the airfoil cases, a strong
initial &&overshoot'' in lift force is seen to occur. This form has a trend that is typical of
a number of blu! sections.

Employing equation (38) in equation (37) leads in this case to de"nition of the admittance
function

Ds
B
D2"F2

B
#G2

B
, (39)

where F
B

and G
B

are de"ned by equations (17) and (18) when F is replaced by F
B
, G by

G
B

and the current set of the parameters a, b, c and d is as employed in equation (38). The
function Ds

B
D2 is plotted in Figure 3. An interesting feature of this admittance function is that

it is the "rst encountered in the present review that exceeds unit value in the range shown.
That an admittance for a blu! body can exceed unity, however, is not rare, as often observed
experimentally (Kumarasena 1989; Larose & Livesey 1997).

7. ADMITTANCES OF REPRESENTATIVE BRIDGE GIRDERS

Equation (36) explicitly de"nes the aerodynamic admittance associated with a blu! sec-
tion for which C@

L
is the associated static vertical lift curve slope and KH*

1
, KH*

4
are

the accompanying #utter derivatives. Thus, for analyses employing admittances in the
frequency domain, prior acquisition of the associated indicial function is not a necessary
step.

Some representative bridges for which #utter derivative data are available to
the writer are the Tsurumi Fairway (cable-stayed) and the Golden Gate, Akashi Kaikyo
and Carquinez Strait (project) suspension spans. The experimentally measured lift curve
slopes (C@

L
)
m

at zero angle of attack, and drag coe$cients C
D
, for these bridges are listed in

Table 1 below. The e!ective vertical lift curve slope C@
L

under these conditions is
(C@

L
)
m
#C

D
.

The #utter derivatives H*
i
, A*

i
appearing in equations (28) and (29) are functions of

(K"2k) typically made available in graphical form where the horizontal scale is
;/nB"2n/K. Figure 4 depicts an example of the functions H*

1
,2, H*

4
as presented by

Katsuchi et al. (1998) for the Akashi Kaikyo Bridge. From such information and the values
of C@

L
in Table 1, the associated aerodynamic admittances [equation (36)] for vertical

motions of four di!erent bridges have been derived as listed in Table 2. Since the experi-
mentally determined #utter derivatives are usually not practically needed or well de"ned
beyond values of the abscissa ;/nB"n/k"25, it is not possible to assert with certainty
what experimental values of Ds(k)D2 hold as kP0, although the likelihood is a convergence
toward unity since this represents the nonoscillatory, steady state. It may particularly be
noted in these examples that the form of the associated aerodynamic admittance is strongly
dependent on the geometric shape of the body section in question.
TABLE 1

Bridge lift slope and drag coe$cients

Location Deck type (C@
L
)
m

C
D

C@
L

Tsurumi (faired box) 3)370 0)104 3)474
Akashi (open truss) 1)198 0)421 1)619
Golden Gate (open truss) 2)865 0)350 3)215
Carquinez (faired box) 4)501 0)144 4)645



Figure 4. Akashi Strait #utter derivatives for vertical motion.

TABLE 2

Lift admittances of airfoil and bridges

n/k k/n Theodorsen Sears Tsurumi Akashi Golden Carquinez
F2#G2 F2

S
#G2

S
Gate

R 0 1 1 (1) (1) (1) (1)
20)00 0)05 0)63 0)56 0)93 1)10 1)07 0)83
10)00 0)10 0)48 0)39 0)93 1)10 0)88 0)73
5)00 0)20 0)33 0)24 0)93 1)10 0)91 0)58
3)33 0)30 0)29 0)18 0)93 1)10 1)00 0)38
2)50 0)40 0)28 0)14 0)93 1)10 1)93 0)32
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In Table 2 the Theodorsen and Sears admittance functions are included for comparison.
The admittances of this table are plotted in Figure 5. Sketches of the cross-sections of the
associated bridges appear in Figure 6. Of the bridges, the Carquinez results appear
coincidentally to follow somewhat the trends of the Sears and Theodorsen admittances. Of
the admittances listed in Table 2 only the airfoil-linked Sears is directly associated with
vertical gust penetration. The others ensue from a related conceptual phenomenon: relative
structure}#uid vertical motion. To-date few experimental studies have been made that
duplicate, for a blu! body, the conception underlying the KuK ssner/Sears airfoil gust entry.
A di!erent viewpoint will next be explored in the blu!-body case.

8. ESTIMATING VERTICAL BUFFETING FORCES

In the design of long-span #exible bridges the problem of gust-induced lift on the deck
girder of long-span #exible bridges is one of recurring interest. If u and w are, respectively,
horizontal and vertical components of wind gusting, a commonly employed quasi-steady



Figure 5. Unmodi"ed aerodynamic admittances [equation (36), Table 2]. T"Tsurumi Fairway; A"Akashi
Strait; GG"Golden Gate; C"Carquinez Strait.
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"rst estimate of the lift on a section of width B is given by

¸
b
"

1

2
o;2BC2C

L

u

;
#C@

L

w

;D . (40)

For varying wind velocities, u, w, it is not certain that the steady-force coe$cients C
L
,

C@
L

remain valid. Hence an improved formulation is sought.
The concept employed in the vertical gust analysis of a bridge structure is not that the

bridge &&enters'' (or is progressively enveloped by) a gust of in"nite extent, as in the airfoil
case, but that "xed-location, time-varying vertical gusting takes place at a point directly
beneath the deck section. If the details of #uid}structure interaction due to a vertical gust
w(t) are considered to be the same as that occurring when the structure undergoes the
identical relative motion in a vertical velocity hQ , then from consideration of the #utter forces,
an appropriate dynamic estimate for the lift slope C@

L
will be

DC@
L
D"K[H*

1
2#H*

4
2]1@2, (41)

as has been argued earlier [equation (36)].
This perception assumes that the vertical gust front completely extends across the width

B of the structure. Since it may not do so in fact, the conceptual picture can be aided by
further information on the nature of vertical gusts in the earth's atmosphere. The
along-wind coherence of vertical gusting at "xed along-wind points in the atmospheric
boundary layer of the earth is de"ned from measurements by Panofsky & Dutton (1983) via
the form

coh(w)"expC!c
0

p
w
; A

nDx

; BD , (42)



Figure 6. Four representative bridge sections.

60 R. H. SCANLAN
where, in the atmospheric boundary layer, c
0
"60, p

w
/; is the intensity of vertical turbu-

lence, n is frequency and Dx is the along-wind separation of two reference points.
For convenience, let a new constant c be de"ned by

c"c
0
I
w

nB

;
, (43)

where I
w
"p

w
/; is the intensity of vertical gusting. Important bridge vibration frequencies

n fall in the range of 0)1}0)5 Hz. The ratio of vertical-to-horizontal wind spectra in this



Figure 7. Representative longitudinal coherence factor R (c) and both unmodi"ed [C, equation (36)] and modi"ed
[C]R(c)] aerodynamic admittance functions for the Carquinez Strait bridge deck cross section.
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frequency range may be taken as S
w
/S

u
K0)6, and a typical horizontal turbulence intensity

may be 10%. Therefore, a value c"5nB/; will be a representative estimate for illustrative
purposes.

The power spectrum S
L

acting on the deck of width B of vertical lift per unit span may
then be estimated via an along-chord coherence integral [cf., for example, Scanlan & Jones
(1990)] as in the following form:

S
L
"C

1

2
o;BC@

LD
2

P
B

0
P

B

0

S
w
(n) expC!c

0

p
w
;

n Dx
1
!x

2
DD dx

1
dx

2
. (44)

In view of the following well-known coherence result

R(c)"P
1

0
P

1

0

e~c@m~g@ dmdg"
2

c2
(c!1#e~c), (45)

the chordwise-integrated lift spectrum at a spanwise deck-girder position takes the spectral
form

S
L
"[1

2
o;BC@

L
]2 S

w
R (c). (46)

In this latter form, C@
L

may be estimated from equation (41), so that a net modi"ed
admittance function for lift due to vertical gusting can be estimated as

Ds
L{
D2"

K2

(C@
L
)2

[H*
1
2#H*

4
2] R(c). (47)

As an example, the functions K2[H*
1
2#H*

4
2]/(C@

L
)2 and R(c) as well as their product Ds

L{
D2

are plotted in Figure 7 for the Carquinez Strait Bridge with c"5nB/;. The above
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illustrative expression for lift due to vertical gust e!ects has not previously appeared in the
literature to the writer's knowledge. A treatment of the e!ect on moment can be carried out
by analogous means.

9. CONCLUSIONS

In this paper, some examples of aerodynamic admittance are examined, with thin airfoil
theory "rst o!ering some perspective on its nature, particularly on the close similarity
between the e!ects associated with vertical gust entry and vertical structural motion. These
analogical observations, carried over to blu!-bodies, o!er a paradigm for estimating the
aerodynamic admittance for a blu!-body subject to transverse gusting. This is based on
information inherent in measured #utter derivatives plus available data on the coherence of
the a!erent vertical components of turbulence.

As sound calculational approaches are needed in the wind response assessment of
important bridges in their design stages, the point of what is discussed in this paper is to
attempt a more accurate assessment, for the class of structures addressed, of across-#ow
bu!eting loads than has typically been employed in past applications.

While theory of the thin airfoil remains a valuable guide as to conceptual steps, because of
its de"nitional constraints it does not o!er directly transferable results for blu!-bodies. This
is pointedly true, for example, for thin-airfoil #utter and gust penetration results, such as the
Theodorsen and Sears admittances; and it is also true for quasi-steady formulations based
on standard static lift and drag coe$cients, which imply constant unit admittances. The
approach outlined in this paper o!ers an alternative rationale, for blu! sectional forms, that
takes into account the experimentally based frequency dependence of the forces investi-
gated. In this scheme the proposed admittances, based upon measurements, are less limited
by a priori conceptualizations.
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APPENDIX: NOTATION

a dimensionless distance to airfoil pivot, or lift function parameter
A*

i
(K) torsional #utter derivative, function of K

b lift function parameter
B deck or airfoil width (chord)
c lift function parameter or coherence coe$cient
C(k) Theodorsen function
C

L
lift coe$cient

C
D

drag coe$cient
d lift function parameter
D drag force per unit span
F(k) real part of Theodorsen function
F
B
(k) real part of blu!-body admittance function

F
S
(k) real part of Sears admittance function

G(k) imaginary part of Theodorsen function
G

B
(k) imaginary part of blu!-body admittance function

G
S
(k) imaginary part of Sears admittance function

h vertical degree of freedom
H*

i
(k) vertical #utter derivative

k reduced velocity, K/2
K reduced velocity, Bu/;
¸ lift force per unit span
n frequency (Hz)
s dimensionless distance or time, 2;t/B
S power spectral density
t time
u horizontal wind gust velocity
; steady horizontal wind velocity
w vertical wind gust velocity
a angle of attack of wind
s
B
(k) complex blu!-body admittance function

s
S
(k) complex Sears admittance function

s
T
(k) complex Theodorsen admittance function

Ds(k)D2 (absolute value)2, aerodynamic admittance
o air density
p variable on range of s
U blu!-body indicial function
/(s) Wagner indicial function
W KuK ssner indicial function
u circular frequency of oscillation
( ) Fourier transform of ( )
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